Effects of haloperidol and its pyridinium metabolite on plasma membrane permeability and fluidity in the rat brain.
نویسندگان
چکیده
The use of antipsychotic drugs is limited by their tendency to produce extrapyramidal movement disorders such as tardive dyskinesia and parkinsonism. In previous reports it was speculated that extrapyramidal side effects associated with the butyrophenone neuroleptic agent haloperidol (HP) could be caused in part by the neurotoxic effect of its pyridinium metabolite (HPP(+)). Although both HPP(+) and HP have been shown to induce neurotoxic effects such as loss of cell membrane integrity, no information exists about the difference in the neurotoxic potency, especially in the potency to induce plasma membrane damage, between these two agents. In the present study, we compared the potency of the interaction of HPP(+) and HP with the plasma membrane integrity in the rat brain. Membrane permeabilization (assessed as [(18)F]2-fluoro-2-deoxy-d-glucose-6-phosphate release from brain slices) and fluidization (assessed as the reduction in the plasma membrane anisotropy of 1,6-diphenyl 1,3,5-hexatriene) were induced by HPP(+) loading (at >or=100 microM and >or=10 microM, respectively), while comparable changes were induced only at a higher concentration of HP (=1 mM). These results suggest that HPP(+) has a higher potency to induce plasma membrane damage than HP, and these actions of HPP(+) may partly underlie the pathogenesis of HP-induced extrapyramidal side effects.
منابع مشابه
A comparative study of the plasma membrane permeabilization and fluidization induced by antipsychotic drugs in the rat brain Short Title: Effects of antipsychotic drugs on plasma membrane Manuscript Categories: Brief Reports
We compared the potency of the interaction of three antipsychotic drugs, i.e., chlorpromazine (CPZ), haloperidol (HAL) and sulpiride (SUL), with the plasma membrane in the rat brain. CPZ loading (≥ 100 μM) dose-dependently increased both membrane permeability (assessed as [F]2-fluoro-2-deoxy-D-glucose-6-phosphate release from brain slices) and membrane fluidity (assessed as the reduction in the...
متن کاملOxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.
Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...
متن کاملEffects of psychotropic drugs on nerve growth factor protein levels in the rat brain
Introduction: Psychotropic drugs exert their effects, in part, by increasing neurotrophin levels in the brain. Nerve growth factor (NGF) protein levels after treatment with only a limited number of psychotropics have been determined. The present study was designed in order to evaluate the effects of acute and chronic administration of different psychotropic drugs on NGF protein levels in fiv...
متن کاملPreparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma
Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...
متن کاملIn vitro metabolism of haloperidol and sila-haloperidol: new metabolic pathways resulting from carbon/silicon exchange.
The neurotoxic side effects observed for the neuroleptic agent haloperidol have been associated with its pyridinium metabolite. In a previous study, a silicon analog of haloperidol (sila-haloperidol) was synthesized, which contains a silicon atom instead of the carbon atom in the 4-position of the piperidine ring. In the present study, the phase I metabolism of sila-haloperidol and haloperidol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in neuro-psychopharmacology & biological psychiatry
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2007